Design Pattern : Compound Components

Nos composants traditionnels montrent parfois leurs limites. Ils ne sont pas tous adaptés pour faire face de manière flexible et robuste à l'évolution constante.

Introduction

En tant que développeurs, nous savons que les projets évoluent constamment : les besoins changent, les designs se métamorphosent et les spécifications initiales peuvent rapidement devenir obsolètes.

Face à cet environnement mouvant, nos composants traditionnels montrent parfois leurs limites. Ils ne sont pas tous adaptés pour faire face de manière flexible et robuste à cette évolution constante.

Qui n'a jamais été frustré par un composant trop rigide pour s'accommoder d'un changement de maquette ou d'une mise à jour des exigences du projet ?

Examinons ensemble, deux exemples, pour illustrer le Design Pattern : Compound Components.

Exemple d’un composant d’UI simple ✏️

Supposons que nous devons créer un composant Card tout ce qu’il y a de plus classique. On a besoin d’affiche un title, une description et un thumbnail.

Voilà une implementation simple de ce que pourrait être ce composant :

// card.tsx

type CardProps = {
	title: string;
	description: string;
	thumbnail: string;
}

function Card({ title, description, thumbnail }: CardProps) {
	return (
		<View>
			<Image source={{ uri: thumbnail }} />
			<Text>{title}</Text>
			<Text>{description}</Text>
		</View>
	)
}

Ainsi que son usage :

// home.tsx

function HomeScreen() {
	return (
		<View>
			<Card
				title="Lorem ipsum"
				description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				thumbnail="https://picsum.photos/200/300"
			/>
		</View>
	)
}

Jusque là, tout va bien, notre composant est simple à développer, simple à utiliser et facile à relire.

Maintenant, comme dans tous les projets, le besoin évolue et le design de nos composants avec. Admettons, que notre besoin a évolué de façon à ce qu’on ai besoin d’ajouter un bouton sur notre composant Card. Mais, ce bouton ne doit pas apparaître à tous les endroits de mon application.

Ce que l’on va retrouver dans la plupart des projets professionnels aujourd’hui, c’est une surcharge de propriétés sur le composant. Le plus souvent, notre composant serait comme suit :

// card.tsx

type CardProps = {
	title: string;
	description: string;
	thumbnail: string;
	buttonLabel?: string;
	showButton?: boolean;
	onPressButton?: () => void;
}

function Card({ 
	title, 
	description, 
	thumbnail,
	buttonLabel,
	showButton = false,
	onPressButton
}: CardProps) {
	return (
		<View>
			<Image source={{ uri: thumbnail }} />
			<Text>{title}</Text>
			<Text>{description}</Text>
			{showButton && <Button label={buttonLabel} onPress={onPressButton} />}
		</View>
	)
}


NB : c’est volontairement exagéré pour mettre en avant le problème. Même sans Compound Components que l’on verra après, on pourra avoir un composant bien plus propre !

Et l’usage du composant serait comme suit :

// home.tsx

function HomeScreen() {
	return (
		<View>
			<Card
				title="Lorem ipsum"
				description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				thumbnail="https://picsum.photos/200/300"
			/>
			<Card
				title="Lorem ipsum"
				description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				thumbnail="https://picsum.photos/200/300"
				buttonLabel="Lorem"
				onPressButton={() => { /* ... */}}
				showButton
			/>
		</View>
	)
}


Observations

Que peux-tu observer sur cet exemple de composant “traditionnel” qui ne représente que de l’UI ?

  1. Structure rigide
    Le composant Card a une structure définie, il contient toujours une image, un titre, une description et un bouton. Il n’y a flexibilité pour changer la structure d’un composant en fonction des besoins.
  2. Passage de props
    Toutes les données dont le composant Card a besoin sont passées via les props. Cela peut devenir encombrant et difficile à maintenir à mesure que nous ajoutons plus de props au composant.
  3. Moins de réutilisabilité
    Les sous-composants ne peuvent pas être réutilisés indépendamment. Par exemple, si nous voulons utiliser seulement le bouton ou l'image de la carte dans un autre composant, cela ne serait pas possible.
  4. Peu extensible
    Ajouter de nouvelles fonctionnalités à la carte nécessite une modification de l'implémentation de la carte elle-même, augmentant potentiellement le risque de créer des bugs non liés.
  5. Simplicité
    Cependant, dans certains cas, cette approche peut être préférable pour sa simplicité. Si votre composant est très simple et n'a pas besoin des avantages offerts par le pattern de Compound Components, le surcoût en complexité peut ne pas en valoir la peine.

Exemple d’un composant plus complexe ✏️

Supposons maintenant que nous devons créer un composant plus complexe, des composants mêmes, qui ont besoin de travailler ensuite pour mettre en oeuvre une fonctionnalité de Todo-list.

Pour cela, nous allons avoir les composants TodoList (pour afficher une liste d’item de todo), TodoItem (qui représente un item de todo), TodoForm (qui représente le formulaire d’un item de todo) et TodoStats (qui affiche des statistiques pour une liste de todo donnée).

Voilà une implementation de ce que pourrait être ces composants :

// todo-list.tsx

type TodoListProps = {
	todos: Array<{ id: string; content: string }>;
	onPressDelete: (id: string) => void;
}

function TodoList({ todos, onPressDelete }: TodoListProps) {
	return (
		<View>
			{todos.map((todo) => (
				<TodoItem 
					key={todo.id} 
					id={todo.id} 
					content={todo.content}
					onPressDelete={onPressDelete}
				/>
			)}
		</View>
	)
}

// todo-item.tsx

type TodoItemProps = {
	id: string;
	content: string;
	onPressDelete: (id: string) => void;
}

function TodoItem({ id, content onPressDelete }: TodoListItemProps) {
	return (
		<View>
			<Text>{content}</Text>
			<Button label="Delete" onPress={() => onPressDelete(id)} />
		</View>
	)
}

// todo-form.tsx

type TodoFormProps = {
	onPressSubmit: (content: string) => void;
}

function TodoForm({ onPressSubmit }: TodoFormProps) {
	const [value, setValue] = useState<string>('')
	
	return (
		<View>
			<TextInput value={value} onChangeText={setValue} />
			<Button label="Add" onPress={() => onPressSubmit(value)} />
		</View>
	)
}

// todo-stats.tsx

type TodoStatsProps = {
	todos: Array<{ id: string; content: string }>;
}

function TodoStats({ todos }: TodoStatsProps) {
	return (
		<View>
			<Text>Sum of todos: {todos.length}</Text>
			{/* average number of characters */}
			{/* ... */}
		</View>
	)
}


Ainsi que l’usage de ces composants :

// home.tsx

function HomeScreen() {
	const [todos, setTodos] = useState([])
	
	return (
		<View>
			<TodoList 
				todos={todos} 
				onPressDelete={(id) => 
					setTodos((state) => state.filter(todo) => todo.id !== id
				}
			/>
			<TodoStats todo={todos} />
			<TodoForm 
				onPressSubmit={(content) =>
					setTodos((state) => [...state.todos, { id: uuid(), content }])
				} 
			/>
		</View>
	)
}


Observations

Que peux-tu observer sur cet exemple de composant “traditionnel” qui ne représente cette fois une fonctionnalité plus complexe ?

  1. Rigidité
    Dans l'état actuel, la structure est assez rigide. Par exemple, si vous voulez une autre variante de TodoItem qui a un bouton pour marquer une tâche comme terminée, ou peut-être une variante de TodoForm qui a des champs supplémentaires, l'adaptation de ces composants à ces scénarios serait plus complexe.
  2. Passage de props
    Les fonctions de suppression et d'ajout sont transmises en tant que props aux composants enfants TodoItem et TodoForm depuis le composant parent HomeScreen. Cela peut devenir compliqué à gérer à mesure que l'application s'agrandit, car chaque fois que vous voulez utiliser ces fonctions, vous devez les transmettre à travers tous les composants intermédiaires.
  3. Manque d’encapsulation
    Les composants TodoItem et TodoForm exposent trop de détails d'implémentation. Par exemple, TodoItem a besoin de connaître non seulement le contenu de la tâche, mais aussi son id et comment traiter une action de suppression. De même, TodoForm doit gérer son propre état et savoir comment gérer une action de soumission. Cela pourrait être évité avec une version composée qui masquerait ces détails.
  4. Peu extensible et peu lisible
    Ce point est suffisamment explicite je pense !

Le Design Pattern : Compound Components 👀

Le Design Pattern : Compound Components s’applique à n’importe quel langage fonctionnant avec des composants et de la gestion d’états. Il s’agit d’une approche qui offre :

  1. Structure
    Le terme "Compound Components" décrit une relation "a un" entre les composants. Un composant comporte plusieurs sous-composants qui travaillent ensemble pour former une unité cohérente. Le composant parent sert de composant de mise en page tandis que les sous-composants déterminent le contenu.
  2. Flexibilité
    Les Compound Components offrent une grande flexibilité dans l'arrangement des sous-composants. Les utilisateurs de cette API de composant peuvent contrôler l'organisation, la structure et la présentation d'un composant.
  3. Abstraction
    Ils permettent une bonne séparation des préoccupations car chaque sous-composant traite une fonctionnalité particulière. Cela permet une meilleure réutilisation des composants et simplifie le test et la maintenance.
  4. Pas de passage de props
    Un avantage majeur du modèle de Compound Components est l'évitement du prop-drilling, qui est un problème où des props doivent être passés à travers de nombreux niveaux de composants. Les Compound Components résolvent ce problème en utilisant le contexte React pour partager la valeur entre les composants.
  5. Encapsulation
    Avec les Compound Components, nous pouvons exposer ce qui est nécessaire et masquer les détails d'implémentation spécifiques. Cela aide à produire un code plus clair et plus facile à maintenir.

Mise en pratique

Maintenant, voyons ensemble un refactor de nos composants précédents en version Compound Components.

Le composant d’UI simple en Compound Components

Reprenons notre composant d’UI simple et convertissons les props title, description, etc. en sous-composants pour en faire une composition comme suit :

// card.tsx

type CardProps = PropsWithChildren

function Card({ children }: CardProps) {
	return <View>{children}</View>
}

Card.Title = CardTitle
Card.Description = CardDescription
Card.Thumbnail = CardThumbnail
Card.Button = CardButton

// card-title.tsx

type CardTitleProps = {	title: string }

function CardTitle({ title }: CardTitleProps) {
	return <Text>{title}</Text>
}

// card-description.tsx

type CardDescriptionProps = {	description: string }

function CardDescription({ description }: CardDescriptionProps) {
	return <Text>{description}</Text>
}

// card-thumbnail.tsx

type CardThumbnailProps = {	source: string }

function Card({ source }: CardThumbnailProps) {
	return <Image source={{ uri: thumbnail }} />
}

// card-button.tsx

type CardButtonProps = {
	label: string;
	onPress: () => void;
}

function CardButton({ label, onPress }: CardButtonProps) {
	return <Button label={label} onPress={onPress} />
}


Et maintenant l’usage :

// home.tsx

function HomeScreen() {
	return (
		<View>
			<Card>
				<Card.Thumbnail source="https://picsum.photos/200/300" />
				<Card.Title title="Lorem ipsum" />
				<Card.Description 
					description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				/>
			</Card>
			<Card>
				<Card.Thumbnail source="https://picsum.photos/200/300" />
				<Card.Title title="Lorem ipsum" />
				<Card.Description 
					description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				/>
				<Card.Button label="Lorem" onPress={() => { /* ... */}} />
			</Card>
		</View>
	)
}


Observations

Quelles observations peux-tu faire cette fois ci ?

  1. Flexibilité
    Le Compound Components donne un plus grand contrôle sur l'organisation des éléments dans le rendu. Dans le deuxième exemple d'utilisation, nous avons de l'information supplémentaire et une absence de bouton, ce qui ne serait pas possible avec une version non composée du composant qui limiterait strictement la structure.
  2. Réutilisabilité
    Les sous-composants, comme CardTitle, CardImage, et CardContent peuvent être réutilisés et réarrangés librement. Cette approche réduit la duplication du code et accroît la maintenabilité.
  3. Lisibilité
    Le code est plus facile à comprendre. Alors qu'un composant non composé pourrait avoir un grand nombre de props, ce qui pourrait rendre le code plus difficile à suivre, chaque sous-composant sait clairement quel est son rôle dans le composant de carte.
  4. Isolation
    Les sous-composants (comme CardButton ou CardImage) peuvent être mis à jour indépendamment des autres sous-composants, évitant ainsi les effets de bord inattendus.
  5. Scalabilité
    Les nouveaux sous-composants peuvent être ajoutés facilement en suivant cette approche, permettant au composant de s'adapter et de se développer avec le temps. Par exemple, un sous-composant CardFooter pourrait être ajouté si besoin.

Le composant complexe en Compound Components

Enfin, passons au plus intéressant, le groupe de composant qui représente la fonctionnalité de Todo-list, voilà la version Compound Components :

// home.tsx

function HomeScreen() {
	return (
		<View>
			<Card>
				<Card.Thumbnail source="https://picsum.photos/200/300" />
				<Card.Title title="Lorem ipsum" />
				<Card.Description 
					description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				/>
			</Card>
			<Card>
				<Card.Thumbnail source="https://picsum.photos/200/300" />
				<Card.Title title="Lorem ipsum" />
				<Card.Description 
					description="Quis enim aliqua ad et consectetur laboris reprehenderit ea anim occaecat adipisicing duis exercitation magna cupidatat."
				/>
				<Card.Button label="Lorem" onPress={() => { /* ... */}} />
			</Card>
		</View>
	)
}

Ainsi que son usage, drastiquement simplifiée :

// home.tsx

function HomeScreen() {
	return (
		<View>
			<Todos todos={[]}>
				<Todos.List />
				<Todos.Stats />
				<Todos.Form />
			</Todos>
		</View>
	)
}


Observations

Que peux t-on observer sur cette dernière partie ?

  1. Flexibilité d’affichage
    Avec l'approche de Compound Components, la disposition des composants est beaucoup plus flexible. Vous pouvez choisir de rendre Todos.List, Todos.Form, et Todos.Stats dans n'importe quel ordre ou même de ne pas les afficher en fonction des spécificités des spécifications ou des besoins de votre application.
  2. Utilisation du Contexte
    Grâce à l'utilisation de React Context (TodosContext), vous pouvez facilement partager des données (todos) et des fonctions (add, remove) entre tous les composants enfants. Cela permet d'éviter le problème de prop-drilling propre à l'approche non compound components.
  3. Hook personnalisé
    Ils utilisent un hook personnalisé useTodosContext pour obtenir les valeurs du contexte. Ce hook rend le code plus lisible et plus facile à utiliser.
  4. Réutilisabilité accrue
    Les composants sont désormais plus indépendants et peuvent être facilement réutilisés ailleurs dans l'application. Par exemple, Todos.List pourra être utilisé dans un autre écran ou dans une sidebar sans avoir besoin de passer d'informations supplémentaires via les props.
  5. Extensibilité
    Avec cette approche, vous pouvez également étendre facilement le composant Todos en ajoutant des sous-composants supplémentaires sans bouleverser l'architecture existante. Par exemple, si vous voulez ajouter une fonctionnalité pour marquer les tâches comme faites, vous pourriez créer un nouveau sous-composant Todos.Checkbox.

Le mot de la fin 👋

De manière générale, le composant “traditionnel” est plus simple, mais il offre moins de flexibilité et de potentiel de réutilisation que le Compound Components. Le choix entre les deux approches dépend des besoins spécifiques du projet. Mais de mon experience, partir direct sur du Compound Components est rarement une mauvaise idée !

Les inconvénients potentiels de cette approche sont qu'elle est plus complexe et qu'elle nécessite une compréhension plus approfondie des concepts de React (pour le cas de React), tels que le Contexte et les Compound Components eux-mêmes. De plus, il est important de noter que bien que le Context puisse sembler être une solution à tous les problèmes, il doit être utilisé avec parcimonie pour éviter un couplage excessif entre les composants de votre application.

L'adoption du pattern Compound Components dans la conception d'interfaces utilisateur peut sembler déroutante au début, mais les avantages qu'elle offre en termes de modularité, de flexibilité et de réutilisabilité sont indéniables. Ainsi, en décomposant intelligemment les composants en des sous-éléments logiques, nous pouvons produire des systèmes d'UI flexibles, réutilisables et gérables.

Vous pouvez retrouvez cet article au format vidéo sur YouTube en suivant ce lien.

Sommaire
Nos autres catégories
Partager sur :
Nos autres catégories
Partager sur :

Ne manquez rien
Abonnez-vous à notre newsletter

Notre newsletter tous les mois :
Je m'abonne
Merci ! C'est dans la boîte :)
Oops! Something went wrong while submitting the form.

Nos experts vous parlent
Le décodeur

L’Architecture Hexagonale sur un projet Web + Mobile (Partie 2 sur 5)
28/2/2024

Dans l'article précédent nous avons initialisé notre monorepo, la CI, le framework de test et préparé la structure de notre projet et plus précisément de notre Architecture Hexagonale pour la lib core.

Dans ce nouvel article de la série notre objectif va être de mettre en place l'Architecture Hexagonale et de montrer comment grâce à elle nous allons pouvoir développer et créer de la logique métier sans UI (donc sans ouvrir le navigateur ou l'app mobile). Pour cela nous allons travailler en TDD (Test-Driven Development, vous pouvez voir mon article à ce sujet) et utiliser le feedback des tests.

L'Architecture Hexagonale

La structure cible

Pour rappel, voici la structure que l'on va mettre en place à l'issue de cet article :

- src
    - wallet
       - __ tests __
         - wallet.service.test.ts
       - domain
         - wallet.ts
         - wallet.repository.ts
         - wallet.service.ts
       - infrastructure
         - in-memory-wallet.repository.ts
         - local-storage-wallet.repository.ts
         - mmkv-wallet.repository.ts
       - user-interface
         - wallet.store.ts

Chose promise, chose due ! Nous allons maintenant rentrer dans le détail de chaque fichier, à quoi ils servent et ce qu'ils contient.

Développer en TDD

Lorsqu'on travaille en TDD on commence par le test et ce test va nous guider vers un objectif. Il va nous assurer qu'on suit le bon chemin à l'aide de la boucle de feedback régulière qu'on obtient à l'aide des tests. Pour en savoir plus sur la méthodologie à suivre pour faire du TDD je vous invite à nouveau à lire mon article à ce sujet.

Nous allons commencer par travailler sur l'entité Wallet qui correspond à un portefeuille qui a un solde négatif ou positif (par exemple on peut avoir le portefeuille "Compte Principal Julien" qui a un solde positif de 1000€).

Voici les tests mis en place pour cette entité :

describe('Wallet Service', () => {
	let service: WalletService

	beforeEach(() => {
		const repository = new InMemoryWalletRepository()
		service = new WalletService(repository)
	})

	test('getAll > should retrieve all wallets', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallets = await service.getAll()

		expect(retrievedWallets).toEqual([newWallet])
	})

	test('get > should retrieve a wallet according to an id', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)

		expect(retrievedWallet).toEqual(newWallet)
	})

	test('create > shoudl create a wallet', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		const createdWallet = await service.create(newWallet)
		const retrievedWallets = await service.getAll()
		const retrievedWallet = await service.get(createdWallet.id)

		expect(createdWallet).toEqual(newWallet)
		expect(retrievedWallets).toEqual([newWallet])
		expect(retrievedWallet).toEqual(newWallet)
	})

	test('update > should update the specified wallet', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }
		const updatedWallet = { id: '1', name: 'Wallet 1', balance: 100 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)
		const modifiedWallet = await service.update(updatedWallet)
		const retrievedModifiedWallet = await service.get(modifiedWallet.id)

		expect(retrievedWallet).toEqual(newWallet)
		expect(modifiedWallet).toEqual(updatedWallet)
		expect(retrievedModifiedWallet).toEqual(updatedWallet)
	})

	test('delete > should delete a wallet according to an id', async () => {
		const newWallet = { id: '1', name: 'Wallet 1', balance: 0 }

		await service.create(newWallet)
		const retrievedWallet = await service.get(newWallet.id)
		await service.delete(newWallet.id)
		const retrievedWallets = await service.getAll()

		expect(retrievedWallet).toEqual(newWallet)
		expect(retrievedWallets).toEqual([])
	})
})

On peut comprendre via ces tests que les cas d'utilisations de notre entité sont :

  • getAll, récupération de tous les portefeuilles
  • get, récupération d'un portefeuille en particulier
  • create, création d'un portefeuille
  • update, mise à jour d'un portefeuille
  • delete, suppression d'un portefeuille

Nous allons voir maintenant comme réussir à mettre en place ces tests.

Domain

Nous allons commencé par créer le contenu de la partie Domain. Dans cette partie nous allons retrouver tout ce qui représente le problème à résoudre (problème métier). C'est une partie qui doit être totalement indépendante.

L'entité

Commençons par créer notre entité Wallet correspondant à un portefeuille.

type Wallet = {
	// un identifiant unique (ex: 4d0c2e72-be1a-4e2c-a189-2f321fcdc3a4)
	id: string

	// un nom (ex: Compte Principal Julien)
	name: string

	// un nombre positif ou négatif pour le solde (ex: +1000€)
	balance: number
}


Le repository

Maintenant que notre entité est définie, nous allons définir une interface que l'on appelle également port qui va préciser comment interagir avec cette entité. Nous utilisons ici un modèle de conception d'inversion de dépendances qui nous permet de rester totalement libre sur les outils à utiliser pour respecter cette interface. Nous pourrons très bien implémenté cette interface en utilisant une base de données, une API ou un localStorage par exemple, le domaine s'en fiche.

interface WalletRepository {
	getAll(): Promise
	get(walletId: string): Promise
	create(wallet: Wallet): Promise
	update(wallet: Wallet): Promise
	delete(walletId: string): Promise
}

Le service

Nous avons notre entité et nous savons commencer interagir avec, maintenant nous allons créer un service qui va consumer une implémentation du de notre interface repository (partie suivante dans l'infrastructure).

class WalletService implements WalletRepository {
	constructor(private repository: WalletRepository) {}

	getAll() {
		return this.repository.getAll()
	}

	get(walletId: string) {
		return this.repository.get(walletId)
	}

	create(wallet: Wallet) {
		return this.repository.create(wallet)
	}

	update(wallet: Wallet) {
		return this.repository.update(wallet)
	}

	delete(walletId: string) {
		return this.repository.delete(walletId)
	}
}

Infrastructure

L'infrastructure est composée des différentes implémentations des ports du domaine, on les appelle également Adapters. Ici, nous aurons du code spécifique pour consommer une technologie concrète (une base de données, une API, etc.). C'est une partie qui ne doit dépendre uniquement du domaine.

L'implémentation du repository

Nous allons maintenant voir l'une des implémentation possible de notre WalletRepository. Pour commencer nous allons faire du in-memory, pratique notamment pour la mise en place des premiers tests de nos cas d'utilisations.

class InMemoryWalletRepository implements WalletRepository {
	private wallets: Wallet[] = []

	getAll() {
		return Promise.resolve(this.wallets)
	}

	get(walletId: string) {
		return Promise.resolve(this.wallets.find((wallet) => wallet.id === walletId))
	}

	create(wallet: Wallet) {
		this.wallets.push(wallet)
		return Promise.resolve(wallet)
	}

	update(wallet: Wallet) {
		const index = this.wallets.findIndex((w) => w.id === wallet.id)
		this.wallets[index] = wallet
		return Promise.resolve(wallet)
	}

	delete(walletId: string) {
		const index = this.wallets.findIndex((w) => w.id === walletId)
		this.wallets.splice(index, 1)
		return Promise.resolve()
	}
}

Comment dis précédemment, il s'agit d'une des multiples implémentation possible de notre WalletRepository. Nous pouvons très bien imaginer plus tard mettre en place un LocalStorageWalletRepository ou bien un SupabaseWalletRepostory.

Vous pouvez consulter mon répertoire public de broney sur GitHub pour voir mon implémentation de ces 2 repository et notamment de comment j'ai adapté ma série de test pour garantir leur bon fonctionnement.

User Interface

La partie user interface est composée de tous les adaptateurs qui constituent les points d'entrée de l'application. Les utilisateurs utilisent ces adaptateurs pour pouvoir interagir avec le coeur de l'application. Dans notre cas nous allons régulièrement utiliser des stores en utilisant la libraire Zustand. Il s'agit d'une libraire JS minimaliste pour la gestion d'états (une solution plus complexe serait par exemple Redux).

Voyons voir comment articuler notre store Zustand pour permettre à l'utilisateur d'interagir avec le coeur de l'application.

import { createStore } from 'zustand/vanilla'
import { InMemoryWalletRepository } from '../infrastructure/in-memory-wallet.repository'
import { WalletService } from '../domain/wallet.service'
import { Wallet } from '../domain/wallet'

const repository = new InMemoryWalletRepository()
const service = new WalletService(repository)

type States = {
	wallets: Wallet[]
	currentWallet: Wallet | undefined
}

type Actions = {
	load: () => void
	setCurrentWallet: (wallet: Wallet) => void
	getWallet: (walletId: string) => void
	createWallet: (wallet: Wallet) => void
	updateWallet: (wallet: Wallet) => void
	deleteWallet: (walletId: string) => void
}

export const walletStore = createStore()((set) => ({
	wallets: [],
	currentWallet: undefined,

	load: async () => {
		const allWallets = await service.getAll()
		set({ wallets: allWallets })
	},

	setCurrentWallet: (wallet) => set({ currentWallet: wallet }),

	getWallet: async (walletId: string) => {
		const wallet = await service.get(walletId)
		set({ currentWallet: wallet })
	},

	createWallet: async (wallet: Wallet) => {
		const newWallet = await service.create(wallet)
		set((state) => ({ wallets: [...state.wallets, newWallet] }))
	},

	updateWallet: async (wallet: Wallet) => {
		const updatedWallet = await service.update(wallet)
		set((state) => ({
			wallets: state.wallets.map((w) => (w.id === updatedWallet.id ? updatedWallet : w)),
			currentWallet: state.currentWallet?.id === updatedWallet.id ? updatedWallet : state.currentWallet,
		}))
	},

	deleteWallet: async (walletId: string) => {
		await service.delete(walletId)
		set((state) => ({
			wallets: state.wallets.filter((w) => w.id !== walletId),
			currentWallet: state.currentWallet?.id === walletId ? undefined : state.currentWallet,
		}))
	},
}))


Avec ce store on remarque qu'on va pouvoir facilement, dans n'importe quel environnement JavaScript, charger, définir, récupérer, créer, mettre à jour et supprimer des portefeuilles, tout en maintenant un état global pour l'ensemble des portefeuilles et du portefeuille courant.

Conclusion

Nous avons maintenant terminé ce deuxième article de cette série sur le développement d'une application web et mobile avec l'Architecture Hexagonale et le partage de la logique métier et des composants UI.

Dans cette deuxième partie nous avons vu comment travailler en TDD et surtout comment écrire de la logique métier sans avoir à ouvrir une quelque interface à l'exception du terminal pour les retours de tests.

Nous avons également eu un aperçu de comment nous allons interagir avec nos applications avec le coeur de l'application, via notre store Zustand. Nous irons plus loin à ce sujet dans le prochain article, la troisième partie : Partager de la logique métier et des composants entre le Web et le Mobile.

DORA Metrics : utiliser la technologie pour piloter la valeur du business
11/4/2023

Les métriques DORA sont devenues incontournables pour évaluer et améliorer la performance des équipes DevOps. Ces indicateurs clés permettent de mesurer la rapidité, la stabilité et l'efficacité du processus de développement et de déploiement logiciel.

Dans cet article, nous analyserons en profondeur ces métriques, leurs implications pour les équipes techniques, et comment les implémenter efficacement. Que vous soyez CTO, membre de la DSI ou développeur, comprendre et utiliser les métriques DORA est essentiel pour optimiser vos opérations et garantir la livraison continue de valeur à vos utilisateurs finaux.

Voici un exemple de projet pour lequel nous suivons les DORA Metrics chez Yield Studio :

Pour qui ?

Avant d’attaquer le sujet concrètement, commençons par définir la cible de ces métriques.

Contre toute attente, elles sont transverses. Moyennant une bonne application, les métriques peuvent être consultées par la DSI , le CTO ou le management top level mais elles sont belles et bien pilotées par les équipes techniques. Ces métriques sont également essentielles pour les équipes DevOps qui cherchent à améliorer leur collaboration et leur performance globale.

Pourquoi ?

Assez simplement ce sont des métriques, des KPI, des nombres qui portent plus ou moins de contexte et permettent de quantifier la performance des équipes techniques (software team). Bien souvent, la littérature retient 4 métriques au total bien qu’il en existe une 5ème qu’on évoquera rapidement mais qu’on exclura par la suite.

Elles fournissent des informations précieuses sur la rapidité avec laquelle les équipes DevOps peuvent répondre aux changements, le temps moyen pour déployer du code, la fréquence des itérations et les échecs.

Ces indicateurs sont cruciaux pour :

  • Fournir des estimations de réponse réalistes
  • Améliorer la planification du travail
  • Identifier les domaines à améliorer
  • Consolider les investissements techniques et en ressources

Les 4 Principales Métriques DORA

  1. DF (Deployment Frequency)

    Il s’agit de la fréquence à laquelle du code est déployé en production sur une période de temps. Précisions tout de même que le code doit être déployé avec succès. S’il faut rollback chaque déploiement ça compte pas.
    C’est également un indicateur de fréquence à laquelle les ingénieurs délivrent de la valeur aux utilisateurs finaux.

    Plus elle est élevée et plus les utilisateurs profitent vite des incréments de code.

    A titre indicatif, une valeur moyenne est de 1 déploiement par semaine.

  2. MLTC (Mean Lead Time for Changes)

    Il s’agit du temps moyen entre le premier commit et le déploiement en production.
    Souvent les développeurs doivent repasser plusieurs fois sur le code produit initialement suite notamment à la re-lecture par d’autre développeurs ou pour apporter des corrections demandées par le product owner.

    Dans un autre domaine, cette métrique correspond au temps d’immobilisation (stock).

    A titre indicatif, une valeur moyenne est de 1 semaine.

  3. CFR (Change Failure Rate)

    Il s’agit du pourcentage de déploiements en production qui causent un problème.

    On le calcule en divisant le nombre d’incident par le nombre de déploiements.

    A titre indicatif, une valeur moyenne se situe entre 16 et 30%.

  4. MTTR (Mean Time To Recovery)

    Il s’agit du temps moyen nécessaire pour réparer un problème et remettre le système dans un état stable.

    A titre indicatif, une valeur moyenne se situe à moins d’un jour.

Une Cinquième Métrique : La Fiabilité

aSouvent oubliée, cette métrique est plus orientée DevOps/SRE et se base sur des objectifs opérationnels/contractuels (SLA). Elle mesure la capacité à atteindre ou dépasser ces objectifs, fournissant une perspective supplémentaire sur la performance opérationnelle.

Comment mettre en place ces métriques ?

Il existe plusieurs approches pour mettre en places ces métriques. La plus simple reste de s’appuyer sur un outil qui les intègre déjà, comme LinearB.

Source: LinearB https://linearb.helpdocs.io/article/7ck7fu67am-metrics-dashboards-dora-metrics

Qu’importe le flacon l’outil, pourvu que vous commenciez à mesurer.

Et si cela ne marche pas dans mon cas  ?

“Oui mais moi ma feature est complexe, il me faut plusieurs semaines pour terminer, je vais biaiser la moyenne gneu gneu gneu …”

  • Découpe ta feature et utilise des feature flags pour délivrer de façon incrémentale.

"Oui mais c’est long de tout tester à chaque fois gneu gneu gneu …"

  • Sois flemmard et écris des tests pour automatiser ton job.

TL;DR

Les métriques DORA sont des indicateurs de la production de valeur produit/business.

Elles sont applicables aux DevOps comme aux développeurs et intéressent toute la software team. Pour être pertinentes, les développeurs doivent être acteurs du pilotage de ces métriques car aucun manager ne pourra les forcer à cela.

Une observation macro est que les DORA poussent naturellement à réduire les incréments de code. En effet, en envoyant moins de code à chaque déploiement, on mitige le risque et les déploiements sont naturellement plus rapide.

Notons aussi que les DORA ne se suffisent pas à elle même, elles appellent à d’autre bonnes pratiques que sont le respect du manifeste agile https://agilemanifesto.org/, l’ajout de tests ou encore les principes LEAN de Toyota.

Enfin, avis aux néophytes avides de tableau Excel, si les DORA permettent de quantifier un problème, une lame de fond, elles ne le qualifie pas pour autant. Le sujet central reste un sujet humain, on parle d’équipes d’homme et de femme qui ont leur code, leur cohésion, leur problématique propre. Piloter uniquement les DORA pour présenter un Excel “tout au vert” serait naïf et pourrait compromettre l’équipe ciblée.

Et Yield Studio là dedans ?

Selon la classification mentionnée en annexe Yield Studio se situe en “high performer” et s’améliore en continu pour atteindre prochainement le grade “elite”. Et vous, vous vous situez où dans ce tableau ? Aujourd'hui les DORA Metrics nous permettent de garantir une réelle qualité auprès de nos clients dans les projets qu'ils nous confient.

Source

Valeurs indicatives pour chaque DORA metric

Source: Google Cloud https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance?hl=en

Développer avec le database branching
14/12/2023

Le database branching est une approche d’organisation de base de données qui permet de reproduire la dynamique et le fonctionnement des branches Git.

On va alors pouvoir à partir d’une base de données appelé “master” pouvoir dupliquer une “branche” avec un certain nom. Cette nouvelle base de données se vera hériter des données ainsi que des migrations de la branche source.

Les cas d’usages de ce principe sont multiples et variés. Si nous reprenons l’analogie avec Git flow, lorsque vous allez créer une nouvelle branche de feature, vous serez amené à devoir développer puis appliquer une migration de données ou bien tout simplement altérer les données contenues dans cette base. Elle devient à partir de là un bac à sable tout en partant d’un environnement déjà prédéfini.

Grâce à la nouvelle base de données mise en place pour votre feature, vous n’allez impacter aucun environnement de production / staging / dev mis en place et accessible par tous les développeurs.

Votre base de données sera alors unique et éphémère, une fois la feature terminée, celle-ci pourra être supprimée.

Elle peut aussi servir de base de données temporaire pour une démonstration client, alimentée de données bien précises pour cette dite démonstration.

Pour terminer cette introduction, j’ajouterai que le database branching est présent avant tout pour améliorer la “DX” des développeurs au quotidien.

Pourquoi ne pas alors simplement produire une base de données sur ma machine ?

Il est autant possible que l’infrastructure du projet mette à disposition un cluster de base de données sur un serveur ou bien qu’un développeur puisse créer son cluster sur sa machine.

Avec un provisionnement type Docker vous pouvez déployer rapidement une base de données sur votre machine avec un script de seeding permettant d’alimenter cette base en données. Cependant, vous allez perdre une composante essentielle au database branching qui est la synchronisation de la branche Git avec les données.  En effet, si vous êtes plusieurs développeurs à intervertir sur cette feature / environnement, aucune manipulations supplémentaires ne sera à faire lors du passage sur la branche Git. Vous récupérez la base de données déjà préparée par le précédent développeur.

Vous allez aussi avoir la problématique d’espace disponible sur votre machine, si vous travaillez sur plusieurs branches en même temps, cela implique de pouvoir posséder un conteneur d’une base de données unique par branche. Donc, une grande quantité de données en local.

Comment s’intègre le Database branching dans le workflow du développeur

Comme n’importe quel outil s’ajoutant sur une stack d’un projet, le database branching viens complexifier quelques aspects techniques de celui-ci.

Alors, il est nécessaire d’automatiser le maximums d’aspects du database branching afin de ne pas augmenter le nombre de tâches à réaliser par les développeurs lors de la création d’une nouvelle feature.

En laissant certaines tâches manuelles, nous risquons de frustrer nos collègues développeurs. En effet, il est très facile d’oublier d’exécuter  une certaine commande après un changement de branche.

Dans la deuxième partie de l’article nous nous intéresseront à réaliser un environnement de développement fluide avec l’exemple d’une stack web.

Je dirai alors que le database branching idéal est celui qui est complètement transparents pour les développeurs.

Dans la finalité ce principe est plus ou moins une idéologie, le degrés de l’implémentation peut dépendre de l’envergure du projet et du nombre de développeurs.

Tutoriel: Mise en place du database branching sur une stack Typescript, Prisma

Initialisation du projet et de la base de donnée

La première étape de ce tutoriel sera de se munir d’une base de données avec un utilisateur ayant l’autorisation de créer des database supplémentaires.

Voici plusieurs providers proposant ce service:

Actuellement nous utilisons une base de données hébergée Aurora Serverless hébergée sur AWS déployée depuis Terraform avec le module suivant.

Pour la suite de ce tutoriel nous avons choisis d’utiliser une base de données PostgreSQL. Il est aussi tout à fait possible de l’intégrer sur une base de données MongoDB, MySQL, …

Pour passer rapidement sur les étapes d’initialisation du projet TS avec Prisma je vous redirige vers la documentation officielle de Prisma.

Après toutes ces étapes vous devriez avoir dans la racine de votre projet un fichier d’environnement nommé .env qui possède une url de base de données DATABASE_URL.

À présent nous pouvons remplacer cette url par celle de notre base de données  provisionnée un peu plus haut.

DATABASE_URL="postgresql://gabriel:password@db-branching.cluster-xxxxxxx.eu-west-3.rds.amazonaws.com:5432/master?schema=public"

La database pointée (master dans ce cas-là) importe peu, elle sera mise à jour par  la suite automatiquement.

Automatisation du changement de branche

Afin de faciliter le passage sur une nouvelle base de données à chaque changement de branche git, il est possible de créer un hook sur le projet git, qui sera exclusivement lancé lors d'une commande git checkout.

Pour celà nous utiliserons un outil facilitant la création de hook git nommé Husky.

Voici les commandes d’installation que vous pouvez retrouver dans la documentation officielle:

Cette dernière commande va alors créer un script bash dans le dossier suivant.husky/post-checkout.

On ajoutera ces trois lignes de bash permettant de récupérer la branche git lors d’un checkout et de mettre à jour le fichier .env

Et voilà !

Maintenant à chaque changement de branche en local votre .env sera mis à jour automatiquement.

Il est possible d’aller plus loin en ajoutant l’application automatique des migrations de la base données et/ou le seeding de data.

Échangeons sur votre projet !

Développement web
Application mobile
Data & IA
Nous contacter

Simulateur

Bienvenue dans le
simulateur d’estimation

Sélectionnez
vos besoins

Sélectionnez un ou plusieurs choix

Définissez les
fonctionnalités

Sélectionnez un ou plusieurs choix

Dernière
étape !

Renseignez votre adresse mail pour recevoir l’estimation !
Obtenez l’estimation
Précédent
Suivant

Bravo ! Vous avez terminé
l’estimation de votre future app !

Vous recevrez dans votre boite mail l’estimation personnalisé. Une estimation vous offre la possibilité de vous projeter dans un budget, vous permettant ainsi de planifier en toute confiance. Néanmoins, chez Yield, nous adoptons une approche agile, prêts à remettre en question et ajuster nos évaluations en fonction de l'évolution de vos besoins et des spécificités de votre projet.
Retour au site
Oops! Something went wrong while submitting the form.